Sebagai contoh:
int a = 12;
cout << typeof(a) << endl;
Output yang diharapkan:
int
Pembaruan C++ 11 ke pertanyaan yang sangat lama: Cetak tipe variabel dalam C++.
Jawaban yang diterima (dan baik) adalah menggunakan typeid(a).name()
, di mana a
adalah nama variabel.
Sekarang di C++ 11 kita memiliki decltype(x)
, yang dapat mengubah ekspresi menjadi tipe. Dan decltype()
hadir dengan seperangkat aturan yang sangat menarik. Misalnya decltype(a)
dan decltype((a))
umumnya akan menjadi jenis yang berbeda (dan untuk alasan yang baik dan dapat dimengerti begitu alasan tersebut diungkapkan).
Apakah typeid(a).name()
kami yang tepercaya membantu kami menjelajahi dunia baru yang berani ini?
Tidak.
Tetapi alat yang akan tidak terlalu rumit. Dan itu adalah alat yang saya gunakan sebagai jawaban untuk pertanyaan ini. Saya akan membandingkan dan membedakan alat baru ini dengan typeid(a).name()
. Dan alat baru ini sebenarnya dibangun di atas typeid(a).name()
.
Masalah mendasar:
typeid(a).name()
membuang cv-kualifikasi, referensi, dan nilai/nilai-ness. Sebagai contoh:
const int ci = 0;
std::cout << typeid(ci).name() << '\n';
Bagi saya output:
i
dan saya menebak pada output MSVC:
int
Yaitu. const
tidak ada. Ini bukan masalah QOI (Kualitas Implementasi). Standar mengamanatkan perilaku ini.
Apa yang saya rekomendasikan di bawah ini adalah:
template <typename T> std::string type_name();
yang akan digunakan seperti ini:
const int ci = 0;
std::cout << type_name<decltype(ci)>() << '\n';
dan untuk saya output:
int const
<disclaimer>
Saya belum menguji ini di MSVC. </disclaimer>
Tapi saya menyambut umpan balik dari mereka yang melakukannya.
Solusi C++ 11
Saya menggunakan __cxa_demangle
untuk platform non-MSVC seperti yang direkomendasikan oleh ipapadop dalam jawabannya untuk jenis demangle. Tetapi pada MSVC saya percaya typeid
untuk menghilangkan nama (belum diuji). Dan inti ini melilit beberapa pengujian sederhana yang mendeteksi, mengembalikan, dan melaporkan kualifikasi cv dan referensi ke tipe input.
#include <type_traits>
#include <typeinfo>
#ifndef _MSC_VER
# include <cxxabi.h>
#endif
#include <memory>
#include <string>
#include <cstdlib>
template <class T>
std::string
type_name()
{
typedef typename std::remove_reference<T>::type TR;
std::unique_ptr<char, void(*)(void*)> own
(
#ifndef _MSC_VER
abi::__cxa_demangle(typeid(TR).name(), nullptr,
nullptr, nullptr),
#else
nullptr,
#endif
std::free
);
std::string r = own != nullptr ? own.get() : typeid(TR).name();
if (std::is_const<TR>::value)
r += " const";
if (std::is_volatile<TR>::value)
r += " volatile";
if (std::is_lvalue_reference<T>::value)
r += "&";
else if (std::is_rvalue_reference<T>::value)
r += "&&";
return r;
}
Hasil
Dengan solusi ini saya bisa melakukan ini:
int& foo_lref();
int&& foo_rref();
int foo_value();
int
main()
{
int i = 0;
const int ci = 0;
std::cout << "decltype(i) is " << type_name<decltype(i)>() << '\n';
std::cout << "decltype((i)) is " << type_name<decltype((i))>() << '\n';
std::cout << "decltype(ci) is " << type_name<decltype(ci)>() << '\n';
std::cout << "decltype((ci)) is " << type_name<decltype((ci))>() << '\n';
std::cout << "decltype(static_cast<int&>(i)) is " << type_name<decltype(static_cast<int&>(i))>() << '\n';
std::cout << "decltype(static_cast<int&&>(i)) is " << type_name<decltype(static_cast<int&&>(i))>() << '\n';
std::cout << "decltype(static_cast<int>(i)) is " << type_name<decltype(static_cast<int>(i))>() << '\n';
std::cout << "decltype(foo_lref()) is " << type_name<decltype(foo_lref())>() << '\n';
std::cout << "decltype(foo_rref()) is " << type_name<decltype(foo_rref())>() << '\n';
std::cout << "decltype(foo_value()) is " << type_name<decltype(foo_value())>() << '\n';
}
dan hasilnya adalah:
decltype(i) is int
decltype((i)) is int&
decltype(ci) is int const
decltype((ci)) is int const&
decltype(static_cast<int&>(i)) is int&
decltype(static_cast<int&&>(i)) is int&&
decltype(static_cast<int>(i)) is int
decltype(foo_lref()) is int&
decltype(foo_rref()) is int&&
decltype(foo_value()) is int
Perhatikan (misalnya) perbedaan antara decltype(i)
dan decltype((i))
. Yang pertama adalah jenis deklarasi dari i
. Yang terakhir adalah "tipe" dari ekspresi i
. (ekspresi tidak pernah memiliki tipe referensi, tetapi sebagai konvensi decltype
mewakili ekspresi lvalue dengan referensi lvalue).
Dengan demikian alat ini adalah kendaraan yang sangat baik hanya untuk belajar tentang decltype
, selain menjelajahi dan men-debug kode Anda sendiri.
Sebaliknya, jika saya membuat ini hanya di typeid(a).name()
, tanpa menambahkan kembali cv-kualifikasi atau referensi yang hilang, hasilnya adalah:
decltype(i) is int
decltype((i)) is int
decltype(ci) is int
decltype((ci)) is int
decltype(static_cast<int&>(i)) is int
decltype(static_cast<int&&>(i)) is int
decltype(static_cast<int>(i)) is int
decltype(foo_lref()) is int
decltype(foo_rref()) is int
decltype(foo_value()) is int
Yaitu. Setiap referensi dan kualifikasi cv dilucuti.
Pembaruan C++ 14
Hanya ketika Anda berpikir Anda punya solusi untuk masalah yang dipaku, seseorang selalu datang entah dari mana dan menunjukkan cara yang jauh lebih baik. :-)
Jawaban ini from Jamboree menunjukkan cara mendapatkan nama tipe dalam C++ 14 pada waktu kompilasi. Ini adalah solusi cemerlang untuk beberapa alasan:
Jamboreejawab tidak menjelaskan semuanya untuk VS, dan saya sedikit mengubah kodenya. Tetapi karena jawaban ini mendapat banyak pandangan, luangkan waktu untuk pergi ke sana dan membarui jawabannya, yang tanpanya, pembaruan ini tidak akan pernah terjadi.
#include <cstddef>
#include <stdexcept>
#include <cstring>
#include <ostream>
#ifndef _MSC_VER
# if __cplusplus < 201103
# define CONSTEXPR11_TN
# define CONSTEXPR14_TN
# define NOEXCEPT_TN
# Elif __cplusplus < 201402
# define CONSTEXPR11_TN constexpr
# define CONSTEXPR14_TN
# define NOEXCEPT_TN noexcept
# else
# define CONSTEXPR11_TN constexpr
# define CONSTEXPR14_TN constexpr
# define NOEXCEPT_TN noexcept
# endif
#else // _MSC_VER
# if _MSC_VER < 1900
# define CONSTEXPR11_TN
# define CONSTEXPR14_TN
# define NOEXCEPT_TN
# Elif _MSC_VER < 2000
# define CONSTEXPR11_TN constexpr
# define CONSTEXPR14_TN
# define NOEXCEPT_TN noexcept
# else
# define CONSTEXPR11_TN constexpr
# define CONSTEXPR14_TN constexpr
# define NOEXCEPT_TN noexcept
# endif
#endif // _MSC_VER
class static_string
{
const char* const p_;
const std::size_t sz_;
public:
typedef const char* const_iterator;
template <std::size_t N>
CONSTEXPR11_TN static_string(const char(&a)[N]) NOEXCEPT_TN
: p_(a)
, sz_(N-1)
{}
CONSTEXPR11_TN static_string(const char* p, std::size_t N) NOEXCEPT_TN
: p_(p)
, sz_(N)
{}
CONSTEXPR11_TN const char* data() const NOEXCEPT_TN {return p_;}
CONSTEXPR11_TN std::size_t size() const NOEXCEPT_TN {return sz_;}
CONSTEXPR11_TN const_iterator begin() const NOEXCEPT_TN {return p_;}
CONSTEXPR11_TN const_iterator end() const NOEXCEPT_TN {return p_ + sz_;}
CONSTEXPR11_TN char operator[](std::size_t n) const
{
return n < sz_ ? p_[n] : throw std::out_of_range("static_string");
}
};
inline
std::ostream&
operator<<(std::ostream& os, static_string const& s)
{
return os.write(s.data(), s.size());
}
template <class T>
CONSTEXPR14_TN
static_string
type_name()
{
#ifdef __clang__
static_string p = __PRETTY_FUNCTION__;
return static_string(p.data() + 31, p.size() - 31 - 1);
#Elif defined(__GNUC__)
static_string p = __PRETTY_FUNCTION__;
# if __cplusplus < 201402
return static_string(p.data() + 36, p.size() - 36 - 1);
# else
return static_string(p.data() + 46, p.size() - 46 - 1);
# endif
#Elif defined(_MSC_VER)
static_string p = __FUNCSIG__;
return static_string(p.data() + 38, p.size() - 38 - 7);
#endif
}
Kode ini akan secara otomatis mundur pada constexpr
jika Anda masih terjebak dalam C++ 11 kuno. Dan jika Anda melukis di dinding gua dengan C++ 98/03, noexcept
dikorbankan juga.
Pembaruan C++ 17
Dalam komentar di bawah ini Lyberta menunjukkan bahwa std::string_view
baru dapat menggantikan static_string
:
template <class T>
constexpr
std::string_view
type_name()
{
using namespace std;
#ifdef __clang__
string_view p = __PRETTY_FUNCTION__;
return string_view(p.data() + 34, p.size() - 34 - 1);
#Elif defined(__GNUC__)
string_view p = __PRETTY_FUNCTION__;
# if __cplusplus < 201402
return string_view(p.data() + 36, p.size() - 36 - 1);
# else
return string_view(p.data() + 49, p.find(';', 49) - 49);
# endif
#Elif defined(_MSC_VER)
string_view p = __FUNCSIG__;
return string_view(p.data() + 84, p.size() - 84 - 7);
#endif
}
Saya telah memperbarui konstanta untuk VS berkat karya detektif yang sangat bagus oleh Jive Dadson dalam komentar di bawah.
Mencoba:
#include <typeinfo>
// …
std::cout << typeid(a).name() << '\n';
Anda mungkin harus mengaktifkan RTTI di opsi kompiler Anda agar ini berfungsi. Selain itu, output ini tergantung pada kompiler. Itu mungkin nama jenis mentah atau simbol nama bubur atau apa pun di antaranya.
Sangat buruk tetapi melakukan trik jika Anda hanya ingin mengompilasi info waktu (mis. Untuk debugging):
auto testVar = std::make_Tuple(1, 1.0, "abc");
decltype(testVar)::foo = 1;
Pengembalian:
Compilation finished with errors:
source.cpp: In function 'int main()':
source.cpp:5:19: error: 'dummy_error' is not a member of 'std::Tuple<int, double, const char*>'
Jangan lupa menyertakan <typeinfo>
Saya percaya apa yang Anda maksud adalah identifikasi tipe runtime. Anda dapat mencapai hal di atas dengan melakukan.
#include <iostream>
#include <typeinfo>
using namespace std;
int main() {
int i;
cout << typeid(i).name();
return 0;
}
Perhatikan bahwa nama yang dihasilkan oleh fitur RTTI dari C++ adalah tidak portable. Misalnya kelas
MyNamespace::CMyContainer<int, test_MyNamespace::CMyObject>
akan memiliki nama-nama berikut:
// MSVC 2003:
class MyNamespace::CMyContainer[int,class test_MyNamespace::CMyObject]
// G++ 4.2:
N8MyNamespace8CMyContainerIiN13test_MyNamespace9CMyObjectEEE
Jadi, Anda tidak dapat menggunakan informasi ini untuk serialisasi. Tapi tetap saja, properti typeid (a) .name () masih bisa digunakan untuk keperluan log/debug
Anda dapat menggunakan templat.
template <typename T> const char* typeof(T&) { return "unknown"; } // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(float&) { return "float"; }
Pada contoh di atas, ketika jenis tidak cocok itu akan mencetak "tidak dikenal".
Seperti disebutkan, typeid().name()
dapat mengembalikan nama yang rusak. Di GCC (dan beberapa kompiler lain) Anda dapat mengatasinya dengan kode berikut:
#include <cxxabi.h>
#include <iostream>
#include <typeinfo>
#include <cstdlib>
namespace some_namespace { namespace another_namespace {
class my_class { };
} }
int main() {
typedef some_namespace::another_namespace::my_class my_type;
// mangled
std::cout << typeid(my_type).name() << std::endl;
// unmangled
int status = 0;
char* demangled = abi::__cxa_demangle(typeid(my_type).name(), 0, 0, &status);
switch (status) {
case -1: {
// could not allocate memory
std::cout << "Could not allocate memory" << std::endl;
return -1;
} break;
case -2: {
// invalid name under the C++ ABI mangling rules
std::cout << "Invalid name" << std::endl;
return -1;
} break;
case -3: {
// invalid argument
std::cout << "Invalid argument to demangle()" << std::endl;
return -1;
} break;
}
std::cout << demangled << std::endl;
free(demangled);
return 0;
}
Anda bisa menggunakan kelas ciri untuk ini. Sesuatu seperti:
#include <iostream>
using namespace std;
template <typename T> class type_name {
public:
static const char *name;
};
#define DECLARE_TYPE_NAME(x) template<> const char *type_name<x>::name = #x;
#define GET_TYPE_NAME(x) (type_name<typeof(x)>::name)
DECLARE_TYPE_NAME(int);
int main()
{
int a = 12;
cout << GET_TYPE_NAME(a) << endl;
}
Definisikan DECLARE_TYPE_NAME
ada untuk membuat hidup Anda lebih mudah dalam mendeklarasikan kelas ciri ini untuk semua jenis yang Anda butuhkan.
Ini mungkin lebih berguna daripada solusi yang melibatkan typeid
karena Anda dapat mengontrol output. Sebagai contoh, menggunakan typeid
untuk long long
pada kompiler saya memberikan "x".
Di C++ 11, kami memiliki jenis mendeklarasikan. Tidak ada cara dalam standar c ++ untuk menampilkan tipe variabel tepat yang dideklarasikan dengan menggunakan jenis pernyataan Kita dapat menggunakan boost typeindex i.e type_id_with_cvr
(cvr adalah singkatan dari const, volatile, reference) untuk mencetak tipe seperti di bawah ini.
#include <iostream>
#include <boost/type_index.hpp>
using namespace std;
using boost::typeindex::type_id_with_cvr;
int main() {
int i = 0;
const int ci = 0;
cout << "decltype(i) is " << type_id_with_cvr<decltype(i)>().pretty_name() << '\n';
cout << "decltype((i)) is " << type_id_with_cvr<decltype((i))>().pretty_name() << '\n';
cout << "decltype(ci) is " << type_id_with_cvr<decltype(ci)>().pretty_name() << '\n';
cout << "decltype((ci)) is " << type_id_with_cvr<decltype((ci))>().pretty_name() << '\n';
cout << "decltype(std::move(i)) is " << type_id_with_cvr<decltype(std::move(i))>().pretty_name() << '\n';
cout << "decltype(std::static_cast<int&&>(i)) is " << type_id_with_cvr<decltype(static_cast<int&&>(i))>().pretty_name() << '\n';
return 0;
}
Jawaban lain yang melibatkan RTTI (tipeid) mungkin yang Anda inginkan, selama:
Alternatifnya, (mirip dengan jawaban Greg Hewgill), adalah membangun tabel waktu kompilasi sifat.
template <typename T> struct type_as_string;
// declare your Wibble type (probably with definition of Wibble)
template <>
struct type_as_string<Wibble>
{
static const char* const value = "Wibble";
};
Perlu diketahui bahwa jika Anda membungkus deklarasi dalam makro, Anda akan mengalami kesulitan dalam mendeklarasikan nama untuk tipe templat yang mengambil lebih dari satu parameter (mis. Std :: peta), karena koma.
Untuk mengakses nama tipe variabel, yang Anda butuhkan adalah
template <typename T>
const char* get_type_as_string(const T&)
{
return type_as_string<T>::value;
}
Anda juga dapat menggunakan c ++ filt dengan opsi -t (type) untuk menghapus nama tipe:
#include <iostream>
#include <typeinfo>
#include <string>
using namespace std;
int main() {
auto x = 1;
string my_type = typeid(x).name();
system(("echo " + my_type + " | c++filt -t").c_str());
return 0;
}
Diuji hanya di linux.
Solusi yang lebih umum tanpa kelebihan fungsi daripada yang sebelumnya:
template<typename T>
std::string TypeOf(T){
std::string Type="unknown";
if(std::is_same<T,int>::value) Type="int";
if(std::is_same<T,std::string>::value) Type="String";
if(std::is_same<T,MyClass>::value) Type="MyClass";
return Type;}
Di sini MyClass adalah kelas yang ditentukan pengguna. Lebih banyak kondisi dapat ditambahkan di sini juga.
Contoh:
#include <iostream>
class MyClass{};
template<typename T>
std::string TypeOf(T){
std::string Type="unknown";
if(std::is_same<T,int>::value) Type="int";
if(std::is_same<T,std::string>::value) Type="String";
if(std::is_same<T,MyClass>::value) Type="MyClass";
return Type;}
int main(){;
int a=0;
std::string s="";
MyClass my;
std::cout<<TypeOf(a)<<std::endl;
std::cout<<TypeOf(s)<<std::endl;
std::cout<<TypeOf(my)<<std::endl;
return 0;}
Keluaran:
int
String
MyClass
Saya suka metode Nick, Bentuk lengkap mungkin ini (untuk semua tipe data dasar):
template <typename T> const char* typeof(T&) { return "unknown"; } // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(short&) { return "short"; }
template<> const char* typeof(long&) { return "long"; }
template<> const char* typeof(unsigned&) { return "unsigned"; }
template<> const char* typeof(unsigned short&) { return "unsigned short"; }
template<> const char* typeof(unsigned long&) { return "unsigned long"; }
template<> const char* typeof(float&) { return "float"; }
template<> const char* typeof(double&) { return "double"; }
template<> const char* typeof(long double&) { return "long double"; }
template<> const char* typeof(std::string&) { return "String"; }
template<> const char* typeof(char&) { return "char"; }
template<> const char* typeof(signed char&) { return "signed char"; }
template<> const char* typeof(unsigned char&) { return "unsigned char"; }
template<> const char* typeof(char*&) { return "char*"; }
template<> const char* typeof(signed char*&) { return "signed char*"; }
template<> const char* typeof(unsigned char*&) { return "unsigned char*"; }
Saat saya menantang, saya memutuskan untuk menguji seberapa jauh seseorang bisa menggunakan tipuan template platform-independent (semoga).
Nama-nama dirakit sepenuhnya pada waktu kompilasi. (Yang berarti typeid(T).name()
tidak dapat digunakan, sehingga Anda harus secara eksplisit memberikan nama untuk tipe non-majemuk. Jika tidak, placeholder akan ditampilkan sebagai gantinya.)
Contoh penggunaan:
TYPE_NAME(int)
TYPE_NAME(void)
// You probably should list all primitive types here.
TYPE_NAME(std::string)
int main()
{
// A simple case
std::cout << type_name<void(*)(int)> << '\n';
// -> `void (*)(int)`
// Ugly mess case
// Note that compiler removes cv-qualifiers from parameters and replaces arrays with pointers.
std::cout << type_name<void (std::string::*(int[3],const int, void (*)(std::string)))(volatile int*const*)> << '\n';
// -> `void (std::string::*(int *,int,void (*)(std::string)))(volatile int *const*)`
// A case with undefined types
// If a type wasn't TYPE_NAME'd, it's replaced by a placeholder, one of `class?`, `union?`, `enum?` or `??`.
std::cout << type_name<std::ostream (*)(int, short)> << '\n';
// -> `class? (*)(int,??)`
// With appropriate TYPE_NAME's, the output would be `std::string (*)(int,short)`.
}
Kode:
#include <type_traits>
#include <utility>
static constexpr std::size_t max_str_lit_len = 256;
template <std::size_t I, std::size_t N> constexpr char sl_at(const char (&str)[N])
{
if constexpr(I < N)
return str[I];
else
return '\0';
}
constexpr std::size_t sl_len(const char *str)
{
for (std::size_t i = 0; i < max_str_lit_len; i++)
if (str[i] == '\0')
return i;
return 0;
}
template <char ...C> struct str_lit
{
static constexpr char value[] {C..., '\0'};
static constexpr int size = sl_len(value);
template <typename F, typename ...P> struct concat_impl {using type = typename concat_impl<F>::type::template concat_impl<P...>::type;};
template <char ...CC> struct concat_impl<str_lit<CC...>> {using type = str_lit<C..., CC...>;};
template <typename ...P> using concat = typename concat_impl<P...>::type;
};
template <typename, const char *> struct trim_str_lit_impl;
template <std::size_t ...I, const char *S> struct trim_str_lit_impl<std::index_sequence<I...>, S>
{
using type = str_lit<S[I]...>;
};
template <std::size_t N, const char *S> using trim_str_lit = typename trim_str_lit_impl<std::make_index_sequence<N>, S>::type;
#define STR_LIT(str) ::trim_str_lit<::sl_len(str), ::str_lit<STR_TO_VA(str)>::value>
#define STR_TO_VA(str) STR_TO_VA_16(str,0),STR_TO_VA_16(str,16),STR_TO_VA_16(str,32),STR_TO_VA_16(str,48)
#define STR_TO_VA_16(str,off) STR_TO_VA_4(str,0+off),STR_TO_VA_4(str,4+off),STR_TO_VA_4(str,8+off),STR_TO_VA_4(str,12+off)
#define STR_TO_VA_4(str,off) ::sl_at<off+0>(str),::sl_at<off+1>(str),::sl_at<off+2>(str),::sl_at<off+3>(str)
template <char ...C> constexpr str_lit<C...> make_str_lit(str_lit<C...>) {return {};}
template <std::size_t N> constexpr auto make_str_lit(const char (&str)[N])
{
return trim_str_lit<sl_len((const char (&)[N])str), str>{};
}
template <std::size_t A, std::size_t B> struct cexpr_pow {static constexpr std::size_t value = A * cexpr_pow<A,B-1>::value;};
template <std::size_t A> struct cexpr_pow<A,0> {static constexpr std::size_t value = 1;};
template <std::size_t N, std::size_t X, typename = std::make_index_sequence<X>> struct num_to_str_lit_impl;
template <std::size_t N, std::size_t X, std::size_t ...Seq> struct num_to_str_lit_impl<N, X, std::index_sequence<Seq...>>
{
static constexpr auto func()
{
if constexpr (N >= cexpr_pow<10,X>::value)
return num_to_str_lit_impl<N, X+1>::func();
else
return str_lit<(N / cexpr_pow<10,X-1-Seq>::value % 10 + '0')...>{};
}
};
template <std::size_t N> using num_to_str_lit = decltype(num_to_str_lit_impl<N,1>::func());
using spa = str_lit<' '>;
using lpa = str_lit<'('>;
using rpa = str_lit<')'>;
using lbr = str_lit<'['>;
using rbr = str_lit<']'>;
using ast = str_lit<'*'>;
using amp = str_lit<'&'>;
using con = str_lit<'c','o','n','s','t'>;
using vol = str_lit<'v','o','l','a','t','i','l','e'>;
using con_vol = con::concat<spa, vol>;
using nsp = str_lit<':',':'>;
using com = str_lit<','>;
using unk = str_lit<'?','?'>;
using c_cla = str_lit<'c','l','a','s','s','?'>;
using c_uni = str_lit<'u','n','i','o','n','?'>;
using c_enu = str_lit<'e','n','u','m','?'>;
template <typename T> inline constexpr bool ptr_or_ref = std::is_pointer_v<T> || std::is_reference_v<T> || std::is_member_pointer_v<T>;
template <typename T> inline constexpr bool func_or_arr = std::is_function_v<T> || std::is_array_v<T>;
template <typename T> struct primitive_type_name {using value = unk;};
template <typename T, typename = std::enable_if_t<std::is_class_v<T>>> using enable_if_class = T;
template <typename T, typename = std::enable_if_t<std::is_union_v<T>>> using enable_if_union = T;
template <typename T, typename = std::enable_if_t<std::is_enum_v <T>>> using enable_if_enum = T;
template <typename T> struct primitive_type_name<enable_if_class<T>> {using value = c_cla;};
template <typename T> struct primitive_type_name<enable_if_union<T>> {using value = c_uni;};
template <typename T> struct primitive_type_name<enable_if_enum <T>> {using value = c_enu;};
template <typename T> struct type_name_impl;
template <typename T> using type_name_lit = std::conditional_t<std::is_same_v<typename primitive_type_name<T>::value::template concat<spa>,
typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>,
typename primitive_type_name<T>::value,
typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>;
template <typename T> inline constexpr const char *type_name = type_name_lit<T>::value;
template <typename T, typename = std::enable_if_t<!std::is_const_v<T> && !std::is_volatile_v<T>>> using enable_if_no_cv = T;
template <typename T> struct type_name_impl
{
using l = typename primitive_type_name<T>::value::template concat<spa>;
using r = str_lit<>;
};
template <typename T> struct type_name_impl<const T>
{
using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
spa::concat<typename type_name_impl<T>::l>,
typename type_name_impl<T>::l>;
using l = std::conditional_t<ptr_or_ref<T>,
typename new_T_l::template concat<con>,
con::concat<new_T_l>>;
using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<volatile T>
{
using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
spa::concat<typename type_name_impl<T>::l>,
typename type_name_impl<T>::l>;
using l = std::conditional_t<ptr_or_ref<T>,
typename new_T_l::template concat<vol>,
vol::concat<new_T_l>>;
using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<const volatile T>
{
using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
spa::concat<typename type_name_impl<T>::l>,
typename type_name_impl<T>::l>;
using l = std::conditional_t<ptr_or_ref<T>,
typename new_T_l::template concat<con_vol>,
con_vol::concat<new_T_l>>;
using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<T *>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, ast>,
typename type_name_impl<T>::l::template concat< ast>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, amp>,
typename type_name_impl<T>::l::template concat< amp>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &&>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, amp, amp>,
typename type_name_impl<T>::l::template concat< amp, amp>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T, typename C> struct type_name_impl<T C::*>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, type_name_lit<C>, nsp, ast>,
typename type_name_impl<T>::l::template concat< type_name_lit<C>, nsp, ast>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<enable_if_no_cv<T[]>>
{
using l = typename type_name_impl<T>::l;
using r = lbr::concat<rbr, typename type_name_impl<T>::r>;
};
template <typename T, std::size_t N> struct type_name_impl<enable_if_no_cv<T[N]>>
{
using l = typename type_name_impl<T>::l;
using r = lbr::concat<num_to_str_lit<N>, rbr, typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T()>
{
using l = typename type_name_impl<T>::l;
using r = lpa::concat<rpa, typename type_name_impl<T>::r>;
};
template <typename T, typename P1, typename ...P> struct type_name_impl<T(P1, P...)>
{
using l = typename type_name_impl<T>::l;
using r = lpa::concat<type_name_lit<P1>,
com::concat<type_name_lit<P>>..., rpa, typename type_name_impl<T>::r>;
};
#define TYPE_NAME(t) template <> struct primitive_type_name<t> {using value = STR_LIT(#t);};
#include <iostream>
#include <typeinfo>
using namespace std;
#define show_type_name(_t) \
system(("echo " + string(typeid(_t).name()) + " | c++filt -t").c_str())
int main() {
auto a = {"one", "two", "three"};
cout << "Type of a: " << typeid(a).name() << endl;
cout << "Real type of a:\n";
show_type_name(a);
for (auto s : a) {
if (string(s) == "one") {
cout << "Type of s: " << typeid(s).name() << endl;
cout << "Real type of s:\n";
show_type_name(s);
}
cout << s << endl;
}
int i = 5;
cout << "Type of i: " << typeid(i).name() << endl;
cout << "Real type of i:\n";
show_type_name(i);
return 0;
}
Keluaran:
Type of a: St16initializer_listIPKcE
Real type of a:
std::initializer_list<char const*>
Type of s: PKc
Real type of s:
char const*
one
two
three
Type of i: i
Real type of i:
int
Seperti yang dijelaskan oleh Scott Meyers dalam Effective Modern C++,
Panggilan ke
std::type_info::name
tidak dijamin untuk mengembalikan apa pun yang masuk akal.
Solusi terbaik adalah membiarkan kompiler membuat pesan kesalahan selama pengurangan tipe, misalnya,
template<typename T>
class TD;
int main(){
const int theAnswer = 32;
auto x = theAnswer;
auto y = &theAnswer;
TD<decltype(x)> xType;
TD<decltype(y)> yType;
return 0;
}
Hasilnya akan seperti ini, tergantung pada kompiler,
test4.cpp:10:21: error: aggregate ‘TD<int> xType’ has incomplete type and cannot be defined TD<decltype(x)> xType;
test4.cpp:11:21: error: aggregate ‘TD<const int *> yType’ has incomplete type and cannot be defined TD<decltype(y)> yType;
Oleh karena itu, kita mengetahui bahwa tipe x
adalah int
, y
tipe const int*